Tutorials - Enjoy!

Exercise 1: Chlorine solid state NMR experiments.

Al-O-P clusters, involving Cl⁻ anions as counter-ions have been studied by solid state Cl NMR (**Figure 1**) (see Azaïs et al., Solid State NMR, 2003).

- ♦ Which isotope was chosen? Why? (see the data below).
- ♦ What is the strongest interaction expected at each Cl site ? Interpret the lineshape shown in Figure 1.
- ♦ The spectra were recorded on a «600 MHz» spectrometer (the *highest field* available at that time...). Why? What is the Cl frequency for the chosen isotope?

Exercise 2: CSA and local symmetry.

The **Figure 2** shows the ¹⁹⁹Hg MAS spectra of two mercurated compounds. In *both cases*, the MAS frequency $v_{\rm rot}$ is the same.

- ♦ Assign the spectra! But justify the answer...
- ♦ In which case is it possible to evaluate the CSA parameters, Δ_{CSA} and η_{CSA} ?

Exercise 3: How to draw a 1st order Q lineshape?

Consider an I nuclear spin (I=n/2 with n > 1).

- ♦ How many single quantum transitions do you expect?
- \bullet Let us take the case of ²⁷Al: I = 5/2. Draw the lineshape corresponding to a first-order quadrupolar interaction.

♦ Interpret the static 27 Al spectrum of KAl(SO_4)₂.12H₂O (**Figure 3**) (see Man et al., Solid State NMR, 1995).

	NA (%)	γ (10 ⁷ rad T ⁻¹ s ⁻¹)	$10^{28}Q/m^2$	D_b	v/MHz
³⁵ Cl	75.53	2.62	-0.1	0.00356	9.81
³⁷ Cl	24.47	2.18	-0.079	0.00066	8.17
^{1}H	99.98	26.75		1	100

Figure 1

Figure 3

Exercise 4: MAS and high power decoupling.

The **Figure 4** shows four ³¹P spectra related to Zn phosphonate containing protons (see Massiot et al., Chem. Mater., 1997). Two of them where obtained under static conditions; two of them under MAS conditions. Two of them where obtained with high power ¹H decoupling and two of them without!

♦ Who is who?

Figure 4

Exercise 5: 13C CP MAS spectra of glycine H₂N-CH₂-COOH.

Various ¹³C CP MAS spectra of glycine are presented in **Figure 5** (at 75 MHz) (see Laupretre, Ecole de RMN des Houches, 1997).

- Spectrum (a) (t_{CP} = 1 ms): assign the peaks. Evaluate v_{rot} .
- Spectrum (b): t_{CP} has been modified. Do we have $t_{CP} \gg \text{or} \ll 1 \text{ ms}$?
- ◆ Spectrum (c): the same as (a)... but a parameter has been modified. Which one?

Figure 5

Exercise 6: High field ²⁷Al MAS NMR spectra.

The **Figure 6** shows four 27 Al MAS spectra of $9(Al_2O_3)$ - $2(B_2O_3)$ (see Massiot, Gan, J. Am. Chem. Soc., 2003).

- \bullet The rotation frequency ν_{rot} is fixed. A single experimental parameter has been modified. Which one ?
- Explain precisely the differences betwenn the spectra.

Exercise 7: ²⁷Al studies of Al-O-P clusters.

The **Figure 7** shows the 27 Al MAS spectrum of a molecular Al-O-P cluster (see Azaïs et al, Eur. J. Inorg. Chem., 2002).

- ♦ Try to assign the lines.
- ullet Is the quadrupolar interaction a good indicator for the characterization of ^{27}Al sites in these compounds?

Figure 6

Exercise 8: Highly resolved spectra for quadrupolar nuclei.

The **Figure 8** presents ²⁷Al spectra related to Sillimanite, Mullite and to a glass (see Massiot in «High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy», 2002). One unique angle of reorientation was involved in the experiments.

- ♦ What is the experiment used? Why? Can you think at other sequences leading potentially to the same results?
- ♦ Why are the correlation signals broader in the case of mullite and of the glass?

Figure 8

Exercise 9: 2D ²⁹Si correlation experiment in glasses.

The **Figure 9** shows two ²⁹Si spectra of a glass: 2 Na₂O.3 SiO₂. One spectrum is obtained at θ = 90° and the other one under MAS conditions (see Florian, Grandinetti, J. Non Cryst. Solids).

• Who is who? Why are the lines rather broad even at «infinite» v_{rot} ?

The **Figure 10** presents a 2D correlation involving an evolution at θ = 90° and the acquisition of the signal at θ = 54.7°.

- ◆ Draw the sequence. Why is it an «anisotropic/isotropic» correlation?
- ♦ Interpret precisely the 2D data.

Projection ?

\$\frac{\delta_{650} = -90.3 \text{ ppm}}{\delta_{550} = -90.4 \text{ ppm}}\$

\$\frac{\delta_{50} = -90.4 \text{ ppm}}{\delta_{50} = -80.6 \text{ ppm}}\$

\$\delta_{550} = -80.6 \text{ ppm}\$

\$\delta_{550} = -80.6 \text{ ppm}\$

\$\delta_{550} = -80.6 \text{ ppm}\$

\$\delta_{550} = -76.7 \text{ ppm}\$

\$\delta_{550} = -76.7 \text{ ppm}\$

\$\delta_{550} = -77.8 \text{ ppm}\$

\$\delta_{550} = -71.8 \text{ ppm}\$

\$\delta_

Figure 10

Figure 9

Experimental session - 300 & 400 AVANCE spectrometers

<u>keywords</u>:

tuning and matching a probe

static and MAS spectra

the CP MAS experiment

the Hartmann-Hahn condition

¹H MAS NMR

²⁷Al MAS NMR

Al-O-P cubane clusters

9

silsesquioxanes $(R-SiO_{1.5})_8$ R = methyl, vinyl...

space group: R3

two sites: Si₁ and Si₂

space group: $\overline{14}$

one site: Al_1 , P_1 , Cl_1